George Lucas Educational Foundation
Project-Based Learning (PBL)

5 Strategies for Aligning PBL to Real-World Problem-Solving

The closer project-based learning comes to the messy, complicated problems of our world today, the more students benefit.

February 11, 2022
Student paint an outdoor wall mural
Frances Roberts / Alamy Stock Photo

In March 2020, I faced a number of challenges as a school superintendent. Earlier in the month, I had read about a virus that was sweeping the world, and while American schools had not shuttered, the challenge seemed both eminent and far off.

Over the next several weeks, months, and years, I, and every other leader, faced a series of problems, including closing schools, redesigning in-person instruction, developing virtual learning programs, and working in partnership with public health organizations.

Interestingly, I learned that authentic, real-world problem-solving has a few key features:

  • I was never given one problem but was presented with a number of problem situations in which I and my team needed to derive key questions that drove our decision-making.
  • The problems we faced continued to change, requiring us to go back and learn new content, prepare for multiple contingencies, and communicate up-to-date information and our plans for multiple scenarios.

Contemporary learning frameworks and related methodologies can learn a lot from what we are experiencing with Covid-19. Applying the two features above to project-based learning (PBL) by using a more fluid rather than static, linear model may best prepare students for what the future of learning and work actually looks and feels like.

5 Strategies to Make PBL More Authentic

1: Students derive the driving question from multiple contexts or multiple issues within a context. In one third-grade class, students read the book We Are Water Protectors and discuss the challenges Native Americans face with the introduction of the Keystone pipeline. Next, the teacher presents two problems:

  • The extraction of cobalt to build electric cars and the negative impact on rural African communities
  • The development of wind farms and the decline of the golden eagle

Students then work together in this strategy to determine the key challenges facing Indigenous people and native species. Next, they develop core questions they want to answer and determine what they need to learn to answer those questions.

2: Students face changes in the problem(s) they are contemplating. Problem environments are fluid, not static. In an AP economics class, students are analyzing supply and demand of a new video game system and preparing to advise the company on what it should do to improve profits.

Every day at the beginning of class, their teacher asks them to scan reliable news sources to report any changes to supply chains, governmental restrictions such as embargoes, or any other factor that would influence their solutions to the client.

The students found out that there were major supply chain issues with essential parts needed to create the video game console. Moreover, some of the ships carrying current consoles are sitting in Asia awaiting passage to the United States because of a political dispute.

The students worked together in small groups and discussed the key factors that were impacting the company they were advising, along with what the students needed to learn and understand before meeting with the client, and finally developed multiple recommendations based on multiple contingencies.

The general strategy looks like this:

  • Students learn about changes to the problem content (this could be via reading multiple news reports, listening to daily podcasts, or engaging with actual people in the field).
  • In small groups, students share their key understanding of the changes and how that impacts their current understanding and strategy.
  • Students determine key “need-to-knows” they have and work with the teacher and peers to gain competencies.
  • Students plan for multiple contingencies and tentative solutions.

3: Presentations are short bursts of what students think and propose during the project with dollops of feedback to make adjustments. Seventh-grade students are sending in their persuasive essay on one of a number of topics (e.g., addressing the homelessness crisis, engaging with politicians on critical race theory).

As they are drafting their papers, students are randomly assigned to present their ideas and current drafts to other students and receive feedback on their writing as well as their persuasiveness to opposing views.

The strategy looks like this:

  • Students have a mid-lesson stop in which they have 5 minutes to prepare to present their current work.
  • Students conduct a feedback protocol (tuning or critical friends) in which one or two students receive feedback.
  • Students who received feedback share what they have changed in a reflective journal or exit ticket.
  • This process is repeated daily.

4: Authentic audiences engage with students throughout the project rather than just at the beginning and/or end. In a fifth-grade art class, students have been commissioned by the local town council to paint murals that represent voices that are largely marginalized in their community. During their work, students meet with a number of artists and community members who share their stories, offer feedback, and address questions.

In this strategy, students engage with people outside the classroom at the beginning, middle, and end of a project to hear stories that relate to the problem context, receive guidance on the technical aspects of the content they are learning, and ask questions.

5: Groups work together in small bursts of time to solve problems. Students in Algebra II are working with logarithms to solve a number of problems related to stomach acid, algae-filled hot tubs, soil composition, and buffalo teeth.

While each student may be solving a different problem, students form small groups to share their learning, evaluate the connections between each context, and give each other feedback. After approximately two weeks of solving complex math tasks, the teacher presents three new problems and forms new groups for students to solve the problem in one or two days.

In this strategy, students form temporary groups of two to three to solve a new challenge and work together for one to two days without forming task-specific roles.

Share This Story

  • email icon

Filed Under

  • Project-Based Learning (PBL)
  • 3-5 Upper Elementary
  • 6-8 Middle School
  • 9-12 High School

Follow Edutopia

  • facebook icon
  • twitter icon
  • instagram icon
  • pinterest icon
  • youtube icon
  • Privacy Policy
  • Terms of Use

George Lucas Educational Foundation