George Lucas Educational Foundation

Project-Based Learning: Real-World Issues Motivate Students

Concrete, authentic project-based learning helps students illustrate core knowledge.
By Diane Curtis
  • Facebook
  • Twitter
  • Pinterest
  • Share
Class watching as fellow students demonstrate their robot
VIDEO: Project-Based Learning: An Overview
Ask Seymour Papert, renowned expert on children and computing, why students are turned off by school, and he quickly offers an example:

"We teach numbers, then algebra, then calculus, then physics. Wrong!" exclaims the Massachusetts Institute of Technology mathematician, a pioneer in artificial intelligence. "Start with engineering, and from that abstract out physics, and from that abstract out ideas of calculus, and eventually separate off pure mathematics. So much better to have the first-grade kid or kindergarten kid doing engineering and leave it to the older ones to do pure mathematics than to do it the other way around."

In a growing number of schools, educators are echoing Papert's assertion that engaging students by starting with the concrete and solving hands-on, real-world problems is a great motivator. Ultimately, they say, such project-based learning that freely crosses disciplines provides an education superior to the traditional "algebra at age nine, Civil War at ten, Great Expectations at eleven" structure.

Students at Harlem's Mott Hall School design their kites on a computer before beginning construction.

Credit: Edutopia

Advocates also say that the availability of technology that can call up the knowledge of the world's best thinkers with the click of a mouse, that can graph in two seconds what once took hours, and that can put scientific instrumentation in a pocket-sized computer further argues for moving away from century-old models of instruction.

"Everybody is motivated by challenge and solving problems, and we don't make use of that in schools enough," says Bruce Alberts, Professor Emeritus at the University of California, San Francisco, and former president of the National Academy of Sciences (NAS). "Project-based learning gives everybody a chance to sort of mimic what scientists do, and that's exciting. And it's fun if it's done well."

Projects Run the Gamut

Examples of projects applicable to the here and now abound:

  • Soil Superheroes Project at King Middle School in Portland, ME : At King Middle School, in Portland, Maine, seventh graders learn about soil bacteria through creating multimedia information pamphlets. They consult professional microbiologists and cartoonists, conduct original research, and then distribute their completed pamphlets to local garden centers, universities, and flower shops.
  • African Wildlife DNA Project at High Tech High in San Diego, CA : At High Tech High, in San Diego, California, an eleventh grade biology class uses DNA barcoding to develop forensic techniques that help protect African wildlife. The students share their findings with wildlife-protection officials and have traveled to Tanzania to lead bushmeat-identification workshops as part of the High Tech High African Bushmeat Expedition.
  • Water Wheel Project at Ferryway School in Malden, MA : At Ferryway School, in Malden, Massachusetts, fifth-graders explore history, science, technology, and engineering by designing their own water wheels. By the time they visit the nearby Saugus Iron Works, a historic site that dates back to the 1640s, they’ve already tested and mastered the centuries-old technology.

The Big Picture

In project-based learning, students try to answer a question -- one that has relevance for them -- that is greater than the immediate task at hand. In its publication Connecting the Bits, the NEA Foundation gives the example of students at a Kentucky elementary school conducting surveys, doing research, building models, and taking field trips with the goal of determining the best kind of new bridge to build over the Ohio River.

The Internet is one of a variety of resources used for project-learning research.

Credit: Edutopia

Students conduct research using a variety of sources, from the Internet to interviews with experts. They work on the project over an extended period of time -- six weeks or more -- because of the in-depth nature of the investigation. Like adults trying to solve a problem, they don't restrict themselves to one discipline but rather delve into math, literature, history, science -- whatever is appropriate to the study.

"One of the major advantages of project work is that it makes school more like real life," says Sylvia Chard, Professor Emeritus of Elementary Education at the University of Alberta and coauthor of Engaging Children's Minds: The Project Approach, a popular book for teachers of young children on learning through projects.

"In real life, we don't spend several hours at a time listening to authorities who know more than we do and who tell us exactly what to do and how to do it," she says. "We need to be able to ask questions of a person we're learning from. We need to be able to link what the person is telling us with what we already know. And we need to be able to bring what we already know and experiences we've had that are relevant to the topic to the front of our minds and say something about them."

Chard doesn't like the term "project-based learning," because she says it implies a focus on projects to the exclusion of other legitimate learning methods; she prefers "project learning." "Younger children will play and explore as well as engage in projects," according to a statement at the Project Approach website. "Older children's project work will complement the systematic instruction in the program."

In-Depth Investigation

Chard defines project learning as an "in-depth investigation of a real-world topic worthy of children's attention and effort." She advocates a three-phased approach: Phase 1 involves an initial discussion of a project topic, including children's firsthand experiences related to the topic. Phase 2 involves fieldwork, sessions with experts, and various aspects of gathering information, reading, writing, drawing, and computing. Phase 3 is the presentation of the project to an audience.

A student at the West Hawaii Explorations Academy measures the pH balance of water as part of a project to restore ancient ponds.

Credit: Edutopia

Bruce Alberts says one reason he believes project-based learning hasn't caught on more is that parents weren't taught that way. But many parents who witness the transformation of their children become ardent converts. "There's a visible hunger to learn," says Ingo Schiller, parent of two former students at Newsome Park Elementary School, in Newport News, Virginia. "When we sit down to dinner, the kids talk nonstop for twenty minutes, telling us what they did and what they saw. This is literally every day!"

And conversations with teachers who use project-based learning in a meaningful way tend to use the same words: excitement, engagement, enthusiasm.

A Host of Benefits

Enthusiasm alone isn't enough of a justification to advocate project-based learning, but the results of that enthusiasm argue in its favor, say educators and researchers who have studied or used project-based learning.

Fifth graders in Lackawanna, Pennsylvania, let Houston know they’re up to the Space Day design challenge.

Credit: Edutopia

Kids who are excited about what they learn tend to dig more deeply and to expand their interest in learning to a wide array of subjects. They retain what they learn rather than forget it as soon as they disgorge it for a test. They make connections and apply their learning to other problems. They learn how to collaborate, and their social skills improve. They are more confident talking to groups of people, including adults. And, as a number of research reports suggest, project-based learning correlates positively with improved test scores, reduced absenteeism, and fewer disciplinary problems.

"I've seen test scores of students rise because of the engagement in project-based learning," says Gwendolyn Faulkner, former technology coordinator at Harriet Tubman Elementary School, in Washington, DC. "I saw my students mainstream out of English as a Second Language into the mainstream classroom. I saw my mainstream students scoring three and four grades above their grade level on standardized tests. I'm a convert."

Three Good Reasons

Eeva Reeder, a former math teacher who led a high school geometry project on designing a school for 2050, says she started project-based learning for three reasons: First, her students were not learning concepts deeply enough to apply or even remember them for a long period. Second, a growing body of research upheld the view that concepts are best understood using concrete examples constructed by the students themselves. Third, while taking a break from teaching to finish a master's thesis, Reeder took a job at a bridge-design company and realized, when she was asked to do a task, that she had never applied her knowledge of mathematics in a real-world situation.

A project on worms captures the imaginations of first graders in Newport News, Virginia.

Credit: Edutopia

"And that, fundamentally, was the final piece that shifted my thinking to the point where I realized I can't go back to the classroom and do things the same way I always have," she says.

If schoolchildren are given the gift of exploration, society will be the beneficiary, both in practical and in theoretical ways, scholars say. "This is the way that mathematics started," notes MIT's Seymour Papert. "It started not as this beautiful, pure product of the abstract mind. It started as a way of controlling the water of the Nile, building the pyramids, sailing a ship. And gradually it got richer and richer."

Diane Curtis is a veteran education writer and a former editor for The George Lucas Educational Foundation.
Last updated: 07/27/2011 by Sara Bernard

Comments (80) Sign in or register to comment Follow Subscribe to comments via RSS

Sir Q's picture

[quote]How in the world can a real life question bring in algebraic concepts, such as graphing equations, polynomials, etc? I would love to incoporate projects into math but, how? Any suggestions from someone who teaches middle school math?[/quote]

Try researching the use of graphing equations and polynomials. That must be a pretty deep class for middle school! If I were in that class, I'd probably be scratching my head as well-knowing the lesson or not! There must be somewhere the discussion could lead to. Finally google your thoughts and include your information. You never know...

Sir Q's picture

[quote]I agree that this technique is helpful in getting students involved in learning. However, I cannot say that this technique would benefit the individual's comprehension of the topic.[/quote]

I don't think it is asking that the baby be thrown out with the bath water...

Mary Pratt Lobdell's picture
Mary Pratt Lobdell
8th Grade E/LA teacher at a rural school near Covington, LA.

PBL fits hand-in-glove with science and math, maybe even with history. I teach E/LA to rural 8th graders in the deep south. Any thoughts or suggestions for PBL's for E?LA? I'd love to think or even conjure up one for grammar--Wow, would that be neat!

Philip Cooper's picture
Philip Cooper
High School and Community College math teacher

Seymour Papert is a bright fellow and perhaps a bit of a dreamer and we should all dream thus... but he probably never had to put this into specifics for a school curriculum with yearly standardized achievement tests. I dare say you could tease physics out of engineering and math to boot with bright, able, motivated children. But in my experience most students will do best knowing what concrete tasks are expected of them and then getting enough examples and correction to be able to it alone. What is the sin in this!

SP's picture

PBL can become meaningful when students get the right tools and training in project management. Even at an early age they should learn the basics of doing a project outline, milestones, tasks, lessons learned etc.
I built for students and teachers to be able to learn PM, share and collaborate on projects and virtual classrooms. It's also totally free so anyone can use it.

Harli Stills's picture

[quote]I will have to agree with the previous post that there needs to be a strong foundation of subject content before engaging in project based learning. I also agree that after I have set up the foundation of subject content, that project based learning is an excellent motivator for my students because they are applying real life to their studies and they find it beneficial and take more from it![/quote]
I agree!

"Professor" Paul GTO Briones's picture
"Professor" Paul GTO Briones
Host and Co-Creator of Virtual Science University & Pre-AP Science Instructor

[quote]Seymour Papert is a bright fellow and perhaps a bit of a dreamer and we should all dream thus... but he probably never had to put this into specifics for a school curriculum with yearly standardized achievement tests. I dare say you could tease physics out of engineering and math to boot with bright, able, motivated children. But in my experience most students will do best knowing what concrete tasks are expected of them and then getting enough examples and correction to be able to it alone. What is the sin in this![/quote]
I disagree with you and agree with Seymour Papert. In my experience, giving students the opportunity to go out and plan and figure real world problems will motivate them to do the rest. If what most schools are doing with Science Education is right, then why are we ranked 21st in the world among fifteen year old science students? When schools do the same thing over and over again and expect better results, this is called insanity according to Physicist and Icon Scientist, Albert Einstein! I found out at Odessa Permian 23 years ago in West Texas, that when you allow students to be creative with an organized plan, they are going to run with the project and leave you astounded! This happened with our high school science, art, and math students when we allowed them to take on developing, planting, and planning an outdoor botanical garden.... This was the biggest science education course of my life. I learned that Project Based Learning is the best route to follow to allow all students to really get engaged in learning other core science and math courses. Once they see what these projects entail, then they realize the importance of higher math and science courses. Since then, I've used the Project Based Learning strategy along with the MIT (Multiple Intelligence Theory) to allow my students to branch out and become good math and science students. Since then, I have over 500 plus of my ex-students involved in medicine, allied health and engineering careers. Those of us that used Project-Based Learning Strategies must have done something right for them to be doing so well in their careers! Visit my website at VSU to learn more about how I teach Biology!

Guest's picture

We are basically saying teachers are required to be just facilitators of learning who provide the problems to solve! As a teacher's of science of 20 years I've couldn't agree more on the concept of "doing" so you u reinforce concepts, but merely to just do projects and learn is so wrong. I've watched students year after year come up from young teachers who have done this and when they reach me in middle school they have learned NOTHING! I asked the important question and the reply is IDK! I given them something to show application to...NOTHING! Although this concept is idealistic there has to be more. You can't just expect because the information is available through technology that students will go find and solve it.
This idea does work for the small minority ... The higly motivated, the gifted aand talented, the high achiever. The majority breaks down and gives up quickly when it requires too much inquiry.
The Answer: A happy medium- 1. Teach the materials 2. Allow students to practice ..alone or in pairs .. With guidance and help from teachers and peers ( builds confidence) . 3. Now transition to working in larger groups to address problems that they can solve. 4. Add and extend the problem to allow differiation.... Students who have achieved at that level to go beyond and finds answers to solving a deeper problem related to the orginal problem.
This allows students to learn, practice and solve at their own level.
As hard as this is to grasp for many..... And really believe this......Every child learns at different levels, have different motivation levels and have no interest in topics the state requires for them to learn....but must.
We can't expect our students to learn on their own as they are doing projects... Just like they need parents to teach them... They need teachers to teach them too!

Sign in to comment. Not a member? Register.