Knowledge in Action AP Physics I Syllabus

Course Driving Question

How can we use physics to creatively solve problems and understand the world?

Course Introduction

This AP Physics I class is intended to meet the same objectives as a first-year college course. However, when compared to other AP Physics I classes, this course is unique in its project-based learning (PBL) approach. While PBL takes many forms, our approach involves student investigations and simulations that require students to *think* like scientists, science advisors, accident investigators, and real-world professionals. Teachers engage students in collaborative problem-solving, argumentation, and deep exploration of the concepts and principles of the discipline. The aim of the PBL approach to the course is to promote deep understanding and meaningful learning through action-based experiences.

Students work collaboratively and individually on tasks and products that are designed to help them succeed at solving complex, authentic challenges. They alternate between two types of projects in this course: 1) investigation projects; and 2) design projects. Investigation projects engage students in investigative work. For example, students investigate whether selected movie scenes are accurate by investigating the physics of motion. On the other hand, design projects engage students in design work that might have them building an ancient Roman arch and detailing the physics of procuring, moving, and building the arch.

Textbook

This course was designed using the OpenStax College Physics textbook. This text is produced by OpenStax and licensed under a <u>Creative Commons Attribution License 4.0</u> license. As a result, this textbook can be accessed for free. Use the information below to access the textbook.

OpenStax, College Physics. OpenStax CNX. Jan 13, 2017 http://cnx.org/contents/031da8d3-b525-429c-80cf-6c8ed997733a@9.58.

Assessments

Over the course of each project, students will have periodic checks by completing project logs. In addition, there is a summative test at the end of each project that includes both free-response and multiple-choice questions. Each project cycle also contains a performance task that may take the form reports and presentation of authentic products.

Course Outline

The projects have been sequenced to build and deepen students' understanding of these concepts over the school year. For example, kinematics is a focal concept in the course that is taught in both the Reel Physics and Sticks and Stones projects. Students learn about one-dimensional motion as they analyze movie scenes in Reel Physics (the first project), and expand their understanding of kinematics in Sticks and Stones (the fourth project) to include two-dimensional motion through the exploration of the motion of ancient tools (i.e., the atlatl, bow and arrow and slingshot). This process of introducing a core concept in an earlier project (e.g., one-dimensional motion), and re-visiting and expanding the concept in later projects is known as "looping".

	Project 1: Reel Physics
Project	In this project, students are in role as Hollywood Science Advisors who are tasked
Description	to answer the driving question, "How real are Hollywood stunts?" Students work
	in teams to evaluate clips from real films for physics accuracy and then propose
	solutions to inaccurate representations of motion. They learn about the principles
	of motion and use a software program to discern whether the scenes are, in fact,
	inaccurate. In the process, students learn how to both read and present data on
	graphs, and justify their suggestions using equations.
Driving Question	How real are Hollywood stunts?
Performance Task	Pitch to Screenwriters
Student Role	Hollywood Science Advisor
Duration	3.5 weeks
Content Covered	One-Dimensional Motion
	Kinematic Equations
	Descriptions of Motion
	Motion Graphs
Investigations	Investigation 1 – Basics of Motion
	Objectives: Students collect their position/time data and construct a graph.
	Explanation: Using video analysis software students analyze their selected scenes
	and collect position time data. While collecting the data students investigate the
	difference between position, displacement, and distance.
	Investigation 2 – Descriptions of Motion
	Objectives: Descriptions of motion: strobe, vector, written, graph (x/t)
	Explanation: Students simulate ticker-tape data for speeding up, slowing down,
	and constant speed. They then use varying representations to describe the motion.
	Investigation 3 – Average vs. Instantaneous Sneed
	Objectives: Average Speed Instantaneous Speed and Velocity, Calculate average
	speed Draw velocity time graphs
	Explanation: Using ticker-tane data and motion graphs, students investigate the
	difference between average vs. instantaneous speed
	Investigation 4 – Motion Graphs and Acceleration
	Objectives: Calculate average acceleration, and draw acceleration/time graphs.
	Explanation: Students use a motion detector and roll a cart up and down a track.
	They then analyze a velocity/time graph and determine the carts acceleration.
	Investigation 5 – Free Fall Motion
	Objectives: Understand the basics of free fall motion in one-dimension, including
	motion graphs.
	Explanation: Students are given a sample of a free-fall motion scene. Students use
	Vernier software to analyze the scene and determine the value of g and investigate
	various free-fall motion graphs.

	Investigation 6 – Kinematic Equations Objectives: Understand and be able to use the basic motion equations. Explanation: Students work through an investigation that helps them derive the kinematic equations. This is followed up by formal instruction and problem solving practice.
Materials	LoggerPro (Vernier) Video Analysis software Vernier Motion Detector Computers Timers Meter sticks Dynamic carts Low friction tracks Vacuum Chamber (if available) Poster and/or chart paper Post-it notes

Project 2: When in Rome	
Project	In this project, students are in role as Ancient Roman architects (civil engineers)
Description	who have been tasked with designing original triumphal arches for Emperor
	Augustus, answering the question, "How can you design an arch that best pleases
	the Emperor?" As students learn about the physics concepts of force, friction, and
	torque, they make decisions about how to move their stones out of quarries, to
	the build site, and into place in the arch.
Driving Question	How can you design an arch that best pleases the Emperor?
Performance Task	Pitch to Emperor Augustus and his Science Advisor
Student Role	Ancient Roman Architect
Duration	5 weeks
Content Covered	Forces
	Newton's Laws of Motion
	Vector Calculations
	Friction
	Pulleys and Ramps
	• Torque
Investigations	Investigation 1 – Types of Forces
	Objective: Understand the basic concept of a force and investigate different types
	of forces.
	Explanation: Students perform a series of small investigations to help categorize
	different types of forces. Students should understand that forces are an interaction
	between two objects (like a handshake). The interaction results in a push or pull.
	They should be familiar with the different types of forces that they will encounter
	in this project: normal force, friction, tension, gravity, and air resistance.
	Investigation 2 – Mass Weight
	Objective: Understand the difference between mass and weight.
	Explanation: Students should understand the weight of an object is just the
	gravitational force exerted on it. An objects mass, on the other hand, is a property

of the object that is analogous to inertia. The property of mass does not change no matter where you are in the universe.

Investigation 3 – Second Law

Objective: Understand the concept of Newton's Second Law, including how the mass, net force, and acceleration are related to one another. Explanation: Using a spring scale and cart, students derive Newton's second law equation. Students should be able to use a force/acceleration graph to interpret the slope as the mass of the object. They should recognize the formal for Newton's second law, and be able to apply it to solve for the acceleration of an object.

Investigation 4 – Friction

Objective: Understand the force of friction and what factors affect it. Explanation: Students investigate friction using a computer simulation. Students should recognize that the static force of friction is variable and is often dependent on the applied force. The force of friction is affected by the normal force and the surfaces in contact.

Investigation 5 – Coefficient of Friction

Objective: To be able to calculate the coefficient of friction. Explanation: Using a brick-and-spring scale, students determine the coefficient of friction. Students should be able to calculate the coefficient of friction for both static and kinetic objects. Students should also recognize that the static coefficient is greater than the kinetic. Conceptually, students should understand that the coefficient is based on the surfaces in contact.

Investigation 6 – Pulley

Objective: Understand the Attwood machine and how it relates to forces and pulleys.

Explanation: Students set up a basic Atwood machine. Students should understand how to draw free-body diagrams for masses attached to an Attwood machine. Using the free-body diagram they should be able to write a net force equation for the system and solve for the acceleration.

Investigation 7 – Inclined Plane

Objective: Understand the concept of an incline plane and how it relates to forces and motion.

Explanation: Using a ramp, brick, and spring scale, students investigate incline planes. Students should be able to draw the free body diagram for an object sitting on an inclined plane. Additionally, they should be able to use trigonometry to solve for various components of forces. This includes objects traveling at a constant speed, and accelerating.

Investigation 8 – Torque

Objective: Understand how center of mass and torque are related to the stability of an arch.

Explanation: Students use blocks to test and build a Roman arch. Students should be able to determine the general rule for when an object is rotationally stable.

	They should recognize that when the center of mass rotated past the pivot point,
	the object will fall over.
Materials	Wooden block arch kits: air-dry clay, or Styrofoam (1 per group)
	Scratch paper
	String
	Tablecloth and dishes
	Carts
	Spring scales
	Meter sticks
	Timers
	Access to computers for graphing (or graph paper)
	Skateboards or roller blades
	Rope
	Balloons
	Forces and Motion Basics PhET Simulations
	(https://phet.colorado.edu/en/simulation/forces-and-motion-basics)
	Small whiteboards
	Poster paper and markers

Project 3: Mission to Mars	
Project	In this project, students are in role as Entry, Descent, and Landing (EDL) engineers
Description	working for NASA tasked with answering the question, "How can you successfully
	land a rover on Mars?" To simulate what an EDL engineer does, students will
	design a rover frame, airbag, and multiple parachutes to safely drop a lander from
	a designated height. Prior to the final test, students will analyzing terminal velocity,
	energy conservation, and impulse.
Driving Question	How can you successfully land a rover on Mars?
Performance Task	Verification & Validation (V&V) Report
Student Role	Entry, Descent, and Landing (EDL) Systems Engineer
Duration	4 weeks
Content Covered	• Energy
	• Work
	• Power
	Impulse
Investigations	Investigation 1 – Air Resistance Terminal Velocity
	Objective: Free body diagrams and motion graphs for objects falling in the
	presence of air resistance.
	Explanation: Students drop coffee filters over a motion detector. Students should
	be able to graph and interpret a velocity/time graph for an object falling and
	reaching terminal velocity. They should recognize that the graph becomes linear as
	it reaches terminal velocity, and that the acceleration eventually reaches zero.
	Students should be able to draw free body diagrams for object's falling in the
	presence of air resistance. This includes: objects in free fall, objects approaching
	the terminal velocity, objects falling at terminal velocity, and objects falling faster
	than the terminal velocity.
	Investigation 2 – What Affects Terminal Velocity

Objective: Understanding of how cross sectional area and weight affect the
Explanation: Students build and test various parachute designs. Students should
understand that as cross-sectional area increases an object will have a slower
terminal velocity. Students should understand that the greater the weight of an
object the greater the terminal velocity. Additionally, they should be able to relate
this idea to the free body diagram, demonstrating that a greater force of air
resistance is required to balance out the greater weight of the object.
Investigation 3 – Impulse and Change in Velocity
Objective: Understand the concept of impulse and how it relates to an object's change in velocity.
Explanation: Students will be able to understand impact force/time, and how it is related to the mass and change in velocity of an object. This includes
understanding that greater force is needed in order to bring an object to rest in a
short period of time.
Investigation 4 – Crumple Zone
Objective: Impulse and how it is related to impact force and time.
Explanation: Using a force plate and crumple material, each student records
landing impact data. Students should understand that in order to make their rover
land safely, they should reduce the acceleration upon landing.
Investigation 5 – Work Kinetic Energy
Objective: Understand the relationship between work and kinetic energy.
Explanation: Students should understand that mass and velocity are the only two
factors that affect an object's kinetic energy. Students should understand that
work changes the kinetic energy of an object. In order to change an object's
energy, a force must be applied on the object over a distance.
Investigation 6 – Work Gravitational Energy
Objective: Understand the relationship between gravitational energy
explanation: Students should understand that the only factors that affect
gravitational energy only is present for a system that contains both the lander and
planet.
Investigation 7 – Conservation of Energy
Objective: Understand the conservation of mechanical energy for a closed system.
Explanation: Students analyze the landing of the curiosity rover. Students should
understand under what conditions the mechanical energy for a system is
conserved. They should recognize that external forces acting on the system
changes the total mechanical energy.
Investigation 8 – Effect of Wind
Objective: Understand the relationship between work and the direction of the force.
Explanation: Students should understand how the direction of the force and

Materials Mars Lander Building Materials Materials Hot glue • Tape Paper • Popsicle sticks Cardboard • Cutting boards Egg cartons • Egg cartons • Foam • String • Rubber bands • Straws Coffee filters LabPro with computer or LabQuest Vernier Motion Detector Meter sticks Ring stand with ring Masking tape Balance One 200g mass or two 100g masses (per group) Video recording equipment (1 per group) Parachute material Post-it notes • Force Plate (suggested from Vernier, order code FP-BTA) • A masses (50g each) to represent the mass of eggs. 8 masses may be useful: as one group drops, another group can be loading the "eggs" into their rover. Video camera with no moving parts (such as flip camera or old cell phone) Helium balloons		 motion of the object is related to the change in energy of the object. If a force is applied perpendicular to the object's motion, the object will turn but there will be no change (no gain or loss) in kinetic energy. Investigation 9 – Power Objective: Understanding power and how it relates to energy. Explanation: Students should understand the definition of power. They recognize that power represents the rate of energy change. They should be able to apply this to solving problems involving energy and time.
Kite string	Materials	Mars Lander Building Materials Hot glue Tape Paper Popsicle sticks Cardboard Scissors/X-ACTO knife Cutting boards Egg cartons Foam String Rubber bands Straws Coffee filters LabPro with computer or LabQuest Vernier Motion Detector Meter sticks Ring stand with ring Masking tape Balance One 200g mass or two 100g masses (per group) Video recording equipment (1 per group) Parachute material Post-it notes For Entire Class Force Plate (suggested from Vernier, order code FP-BTA) 4 masses (50g each) to represent the mass of eggs. 8 masses may be useful: as one group drops, another group can be loading the "eggs" into their rover.

Project 4: Sticks and Stones	
Project	In this project, students are in role as cast members on a survival show set in the
Description	Paleolithic era, answering the driving question: "Would you have been able to
	survive in the Paleolithic era?" As part of this project, students will design, build
	and test three ancient hunting tools. As students build their hunting tools, they

	explore the concepts of projectile motion, uniform circular motion, energy, and
	torque.
Driving Question	Would you have been able to survive in the Paleolithic Era?
Performance Task	Survival Challenges with Tools
Student Role	Survival Show Cast Member
Duration	4 weeks
Content Covered	Projectile Motion
	Elastic Energy
	Uniform Circular Motion
	Rotational Dynamics
	Torque
Investigations	Investigation 1 – Elastic Energy
	Objective: Understand elastic potential energy and Hooke's law.
	Explanation: Students build a bow, determine the elastic energy, and derive
	Hooke's law. Students should be able to calculate the elastic potential energy of a
	spring and use Hooke's Law to determine the spring constant. This includes
	understanding the force/displacement graph of a spring.
	Investigation 2 – Projectile Motion
	Objective: Understand motion graphs for projectile motion.
	Explanation: Using video analysis software, students analyze projectile motion
	scenes. Students should be able to separate projectile motion into its x and y-
	directions. Additionally, students should understand that one dimensional motion
	from the Reel Physics project can be applied to the separate components of the
	noiectile motion
	Investigation 3 – Bow Range
	Objective: Understand how to calculate the range for projectile motion.
	Explanation: Using information about their bow, students determine the
	theoretical range. Students should be able to use the kinematic equations to solve
	for variables in both the x and y-direction of projectile motion. This includes being
	able to solve for the time in the y-direction, and solve for the range in the x-
	direction.
	Investigation – 4 UCM
	Objective: Understand the basics of uniform circular motion.
	Explanation: Students look at a simulation to analyze circular motion. Students
	should understand basic properties of uniform circular motion including: tangential
	should understand the center socking net force requirement for an object moving
	in a circular nath
	Investigation 5 – Sling
	Objective: Understand centripetal force and be able to complete basic uniform
	motion calculations.
	Explanation: Students build and test a sling and ball. Students should be able to

	draw a free body diagram for an object moving in a horizontal circular. Additionally, students should be able to calculate the centripetal acceleration,
	centripetar force, angular velocity, and intear velocity.
	Investigation 6 – Sling Range Objective: Understand free body diagrams for objects moving in a vertical loop. Explanation: Using the sling data, students determine the theoretical range of their sling. Students should understand how to draw free body diagrams for an object moving in a vertical circle. This includes how the net force equation changes for the top and bottom of the objects motion.
	Investigation 7 – Atlatl Design Objective: Understand torque and moment of inertia. Explanation: Students build and design an atlatl. Students should understand how torque is related to the angular acceleration of an object. Additionally, students should understand how the moment of inertia is related to the angular acceleration, and net torque.
	Investigation 8 – Atlatl Range Objective: Be able to complete rotational dynamics, and rotational kinetic energy calculations.
	Explanation: Using the atlatl data, students determine the theoretical range. Students should be able to use the rotational kinematic formulas to calculate and make predictions about objects undergoing constant angular acceleration. Additionally, students should understand the concept of rotational kinetic energy and how it relates to rotational dynamics.
Materials	Materials for bow: PVC pipe Paracord Duct tape Materials for arrow: Bamboo Duct tape Padding/foam for arrow tip Materials for sling: Leather or other pouch material Cord Duct tape Scissors Materials for atlatl: PVC pipe PVC L-joint Duct tape String Cardboard Bathroom scale or strong spring scale
	Measuring tape/meter sticks

Vernier Logger Pro software
Long measuring tape for range distances
Ladybug Revolution PhET Simulation
(https://phet.colorado.edu/en/simulation/rotation)

Project 5: Crash Scene Investigation	
Project	In this project, students are in role as Accident Investigators answering the
Description	question, "How can we accurately determine what happened in a car crash?" They
	"loop" back to what they have learned about one-dimensional kinematics and
	extend that knowledge to figure out the post-collision velocity of the cars. They
	learn about Conservation of Momentum to determine pre-collision velocity and
	the force upon impact.
Driving Question	How can we accurately determine what happened in a car crash?
Performance Task	Final Accident Report & Cross Examination
Student Role	Accident Investigator
Duration	3 weeks
Content Covered	Momentum
Investigations	Investigation 1 – Momentum
	Objective: Understand the concept of momentum, conservation of momentum,
	and Newton's Third law.
	Explanation: This is a collision investigation using carts and tracks. By the end of
	the investigation, students should understand the concept of momentum,
	including the conservation of momentum. Students should also recognize that
	kinetic energy is not always preserved in collisions. This investigation also covers
	Newton's Third Law. Students should recognize the forces during the collision are
	equal on both carts including cats with different masses.
	Investigation 2 – Two-Dimensional Momentum
	Objective: Understand the conservation of momentum for collisions in two-
	dimensions.
	explanation. This constant investigation uses a simulation for a two-unitensional
	momentum congrately in the y and y directions. Students should recognize that
	the conservation of momentum can only be accounted for if the momentum is split
	into components
Materials	Two dynamics carts and a track
	Timers
	Masses
	Scale
	Matchbox cars
	Butcher paper
	Cellphone/Digital camera

Project 6: Planet Hunters	
Project	In this project, students are in role as Planetary Astrophysicists who are tasked
Description	with answering the driving question, "How extreme can planets get?" Students
	receive data (in the form of Radial Velocity and Transit Data Graphs) on known

	exoplanets. They learn about and apply a number of physics principles:
	conservation of angular momentum, uniform circular motion, and the Universal
	Law of Gravitation.
Driving Question	How extreme can planets get?
Performance Task	Solar Simulation, Exoplanet e-book page, & Extreme Exoplanet Conference
Student Role	Planetary Astrophysicist
Duration	3 weeks
Content Covered	Newton's Universal Law of Gravitation
	Conservation of Angular Momentum
Investigations	Investigation 1 – Kepler's Second Law
-	Objective: Understanding how force and energy affect the orbital motion of a
	planet, including how these concepts are related to Kepler's Second Law.
	Explanation: Students should understand how the forces and energy are related to
	the orbital motion of a planet around a star. This includes understanding how
	kinetic energy increases as the planet approaches the star, and how gravitational
	potential energy increases as you move further away. Additionally, students should
	understand how the force relates to the acceleration and change and direction.
	Investigation 2 – Planetary Detection Techniques
	Objective: Understand how planetary detection techniques are used to find
	exoplanets. Specifically, this is focused on the Doppler Effect for sound and light.
	Explanation: Students should understand the transit, Doppler, and direct imaging
	techniques for exoplanet detection. Additionally, students should understand the
	Doppler Effect for sound (objects moving toward or away from the observer).
	Investigation 3 – Gravitation
	Objective: Understand Newton's Universal Law of Gravitation and be able to use it
	to calculate the force of gravity acting on two objects.
	Explanation: Students should understand what factors affect the force of gravity.
	This includes understanding how the inverse square law is related to the force and
	distance between the objects. Students should be able to use the equation for
	Newton's universal law of gravitation and be able to solve for the force of gravity
	acting on the two bodies.
	Investigation 4 – Orbital Motion
	Objective: Understand how orbital motion is related to uniform circular motion. Be
	able to combine these two concepts to solve computational problems.
	Explanation: Using a computer simulation, students analyze orbital motion.
	Students need to be able to use prior concepts of uniform circular motion in
	conjunction with Newton's Universal Law of Gravitation to solve problems. This
	includes be able to determine the period and orbital velocity of an orbiting object.
	Investigation 5 – Planet Formation
	Objective: Understand the conservation of angular momentum, and how the
	conservation of linear momentum is related to the motion of the center of mass of
	a system.
	Explanation: Students should understand how the conservation of angular

	momentum is related to a spinning object. This includes understanding what
	happens to the moment of inertia as an object's spinning radius is decreased.
	Additionally, students should understand how the conservation of linear
	momentum is related to the center of mass of an object. Students should
	recognize that the center of mass remains stationary if all of the forces are internal
	to the system.
	Investigation 6 – E-field and g-field
	Objective: Understand the concept of gravitational fields and electric fields, and
	recognize the key similarities and differences between them.
	Explanation: Students should recognize that both electric fields and gravitational
	fields are governed by inverse square law relationships. Additionally, the drawn
	field lines are similar and represent the force acting on the objects near each
	particle/mass. However, students should realize that the electric field points in the
	direction of a positive test charge, which can either point toward or away from the
	particle depending on the sign of the charge.
Materials	Two dynamics carts and a track
	Timers
	Masses
	Scale
	Computers
	Gravity and Orbits PhET Simulation
	(https://phet.colorado.edu/en/simulation/gravity-and-orbits)
	Microsoft Sway (optional)

Project 7: Art in Motion	
Project	In this project, students are in role as Science-Based Artists answering the
Description	question, "How can you use physics to build a whimsical kinetic sculpture?" This
	project provides students with creative license to design a sculpture that meets
	specific physics criteria. Students' sculptures must include pendulum and spring
	motion, sound, and a simple electric circuit. The final task in this project is an art
	installation in which students build their sculptures.
Driving Question	How can you use physics to build a whimsical kinetic sculpture?
Performance Task	Kinetic Sculpture Showcase & Online Competition
Student Role	Science-based Artist
Duration	7 weeks
Content Covered	Simple Harmonic Motion
	Mechanical Waves
	Simple Circuits
Investigations	Investigation 1 – Pendulums
	Objective: Understand the simple harmonic motion of a pendulum.
	Explanation: Using a simulation on a copter, students analyze the motion of a
	pendulum. Students should understand how force and energy are related to the
	simple harmonic motion of a pendulum. This includes recognizing that the kinetic
	energy of the pendulum decreases to zero as the pendulum reaches its max
	amplitude. Additionally, students should understand that the force of gravity acts
	as a restoring force constant pulling the bob back toward equilibrium position.

Finally, students should be able to solve for the period of the pendulum using the correct formula.

Investigation 2 – Spring Simple Harmonic Motion

Objective: Understand the simple harmonic motion of a spring and mass. Additionally, write an equation for the position of an object moving in simple harmonic motion.

Explanation: Students use a simulator to analyze the motion of a spring and its mass. Students should understand how Hooke's law and elastic energy is related to the simple harmonic motion of a spring and mass. This includes understanding when the kinetic energy and elastic potential energy are at their maximum values. Additionally, students should be able to write an equation for the position of an object in simple harmonic motion. Students should recognize that the position follows basic characteristics of a periodic function.

Investigation 3 – Waves

Objective: Understand the difference between longitudinal and transverse waves, including wave interference and standing wave patterns.

Explanation: Students use Slinkies to analyze the motion of waves. Students should be able to identify the difference between longitudinal and transverse waves. Additionally, they should understand the concept of super position and how it relates to wave interference patterns. Students should be able to recognize nodes and anti-nodes in standing wave patterns.

Investigation 4 – Pipe Harmonics

Objective: Understand open and close end pipe harmonics. Explanation: Students use a tuning fork and pipe to study pipe harmonics. Students should understand standing wave patterns for both open and closed end pipe harmonics. This includes understanding harmonics and how to solve for the wavelength and frequency of a wave.

Investigation 5 – Circuit Elements

Objective: Understand basic circuit characteristics including voltage, current, and resistance.

Explanation: Students should understand voltage, current and resistance. Additionally, students should be able to draw basic circuit diagrams. Students will use Ohm's law and understand how its variables are related.

Investigation 6 – Parallel and Series

Objective: Understand the difference between parallel and series circuits, including combination circuits.

Explanation: Students should understand how the current and resistance vary for circuit arranged in parallel or series. This includes being able to calculate the equivalent resistance for parallel and series. Students should also be able to analyze combinations of circuits.

Investigation 7 – Kirchhoff Rules

Objective: Understand Kirchhoff's loop and junction rule. Additionally, understand

	how to use the concepts within circuit analysis. Explanation: Students should understand how Kirchhoff's rules apply to circuits. This includes recognizing the relationship between the conservation of energy and the loop rule, and the relationship between the junction rule and the conservation of charge. Students should also be able to use the rules to apply them to circuit
	analysis solving for current and voltage.
	Investigation 8 – Power and Resistance
	Objective: Understand electric power and the resistance of a wire; this includes the
	Explanation: Students should be able to solve for the power dissipated by a circuit.
	Additionally, they should recognize the factors that affect the resistance of a wire.
	This includes understanding how resistivity is related to the material of the conductor
Materials	PhET Simulations:
	 Pendulums (<u>https://phet.colorado.edu/en/simulation/pendulum-lab</u>)
	Masses and Springs
	 (https://phet.colorado.edu/en/simulation/mass-spring-lab)
	Wave Interference (<u>https://phet.colorado.edu/en/simulation/wave-</u>
	interference)
	Circuit Construction Kit (DC Only)
	(https://phet.colorado.edu/en/simulation/circuit-construction-kit-dc)
	Slinky
	Tuning forks
	Pipes
	Graduated cylinders
	Light bulb
	Battery
	Wire
	various sculpture materials:
	Old electronics Delint (array point)
	Paint/spray paint
	• PVC pipe
	• String
	• Duct tape
	 Hot glue