Name:	Period:
-------	---------

Engineering Work Sample

Start Date:_____ End Date:_____

Title of Engineering Report:

Scores

	Stuc	lent	Sco	ore	Section Teacher				Score				
1	2	3	4	5	Define the Problem	1 2 3 4 5				5			
					(or Possibility)								
1	2	3	4	5	Design a Solution	1	2	3	4	5			
1	2	3	4	5	Collect Data	1	2	3	4	5			
1	2	3	4	5	Analyze	1	2	3	4	5			

5—Highly Proficient

4-Proficient

3—Nearly Proficient

2-Working Toward Proficiency

1-Novice

(Attach additional pages as necessary.)

We created this packet using the Beaverton-Hillsboro Science Fair Judging Rubric for Engineering, by Melissa Potter.

1. Defining the Problem (or Possibility)

Explain the problem, and identify the criteria as well as the constraints within which it must be solved.

Duchy ound Information and Existing-Oblations Ocor my Ou											
Nearly Proficient	Proficient	Highly Proficient									
The background information	The background information	The decryptions of									
and previous solutions only	and previous solutions relate	background information and									
partly relate to the problem	to the problem, and the	previous solutions are									
and design.	student has used supporting	thorough and clear, revealing									
	details accurately to suggest	extensive understanding of									
	a design.	scientific and engineering									
		concepts.									

Background-Information and Existing-Solutions Scoring Guide

Background Information and Existing Solutions

Provide background information about the problem (or possibility) and describe the science and engineering concepts that you can use to create a solution. If possible, include and cite previous solutions that others have engineered.

(Add additional pages as needed.)

Nearly Proficient	Proficient	Highly Proficient
The student needs to explain	The student has clearly	The student has clearly
the problem more clearly so	explained the problem so it	explained the problem in
it is better understood and	is testable.	terms of related science and
testable.		engineering concepts so it is
		testable.

Identify the Problem Scoring Guide

Description of problem (or possibility)

Explanation of Criteria and Constraints Scoring Guide

Nearly Proficient	Proficient	Highly Proficient
The criteria and constraints are missing or are limited in scope.	The student has clearly identified the criteria and constraints.	The student has thoroughly analyzed the criteria and constraints using a decision- making tool such as a list of pros and cons, a Pugh chart, or a decision tree

Criteria

What standards will you use to make decisions about the quality of the design when you test it?

Constraints

These are the limits in terms of time, resources, material strength, and sustainability that frame the solution.

Pugh Chart

You can use this tool when you need to compare more than one option. Select a datum. A datum is the existing solution with which you will compare your new ideas to see whether they are better, worse, or the same. List the criteria (or standards) that you will use to measure the quality of the proposed solution. Select different options, and decide whether each option is better (+), worse (-), or the same (0) as the datum.

	Datum	Option 1	Option 2	Option 3
Evaluation	Description:	Description:	Description:	Description:
Criteria				
	0			
	0			
	0			
	0			
	0			
	0			
	0			
	0			
Totals	0			

2. Design of Solution

Explain how you've designed the solution, and describe how to make a prototype.

Nearly Proficient	Proficient	Highly Proficient
The student needs to	The student has described	The student has thoroughly
compare the options, or they	and compared each option	analyzed each option using
are unclear.	clearly.	detailed reasoning.

Exploring-Options Scoring Guide

Explore different options to see how to design the solution.

Discuss the alternatives in the list of pros and cons, the Pugh chart, or the decision tree.

Identification of Solution Scoring Guide

Nearly Proficient	Proficient	Highly Proficient
The solution needs to be	The solution fits with most	The solution is thoughtfully
more directly related to the	of the criteria and	selected based on the design
problem.	constraints.	criteria and constraints.

Solution

Describe the solution you chose and how it fits within the design constraints.

Research Question

Make a claim that one can test.

Creation of a Prototype Scoring Guide

Nearly Proficient	Proficient	Highly Proficient
The prototype needs to have	The prototype is practical	The prototype is creative
a practical design that one	and one can test it as a	and practical. One can test
can test.	solution.	it, and it meets both the
		criteria and constraints.

Materials List

List all the items you need to make a prototype and the amount required.

Procedures for Making the Prototype

Number the steps and make them clear so that they easily explain how to build the prototype.

(Add additional pages as needed.)

Initial Schematic

Draw the prototype to scale, and label each part.

Nearly Proficient	Proficient	Highly Proficient
The testing procedures need	The procedures test the	The testing procedures are
to allow for collecting more	prototype in a way that	based on mathematical and
relevant data to determine	measures whether the	scientific principles. They
whether the prototype	design is adequate to meet	are thoughtfully designed to
meets the criteria.	the criteria for a successful	collect enough data to
	solution.	determine whether the
		prototype meets the criteria
		and constraints for a
		successful solution.

Testing the Prototype Scoring Guide

Evaluation Criteria

Choose which evaluation criteria you will use to measure whether the prototype is successful.

Dependent Variable

Identify what you are measuring and which units you will use to measure the quality of the design.

Controlled Conditions

List the variables that must be held constant.

Testing Procedures

All steps should be clear and numbered.

(Add additional pages as needed.)

3. Data Collection

Collect, transform, and graph data to evaluate the design.

_		
Nearly Proficient	Proficient	Highly Proficient
The tables or graphs need to	The tables and graphs are	The tables and graphs
be more understandable. The	clear and labeled.	answer the research
title needs to be more		question and are thoroughly
descriptive, the axes need to		labeled.
be labeled, or the units are		
missing.		

Data-Collection Scoring Guide

Data Table(s):

Label columns and rows and give the units.

Graphs Give each graph a descriptive title, label axes, and indicate units.

Explain Patterns and Trends

Show computations that explain patterns and trends so that we can make inferences.

4. Analyzing

Summarize the results of the test and design process by evaluating the solution and suggesting improvements.

Nearly Proficient	Proficient	Highly Proficient
The student needs to	The student has given a	The student has given a
support the results with the	clear explanation of the	clear explanation of the
data.	results using the data.	results, using the data to
		highlight any patterns or
		trends.

Results Scoring Guide

Results of Prototype Test

Summarize results shown in the data and graphs. Compare the results with the criteria. Restate the research question, and discuss the claim based on whether the data supports it or does not support it.

Nearly Proficient	Proficient	Highly Proficient
The student needs to	The student has provided a	The student has provided a
provide more discussion of	clear explanation of how the	thorough analysis of the
the appropriateness of the	design solves the problem.	appropriateness of the
design as a solution to the		design and has compared it
problem.		with other possible designs.

Appropriateness of Design Scoring Guide

Appropriateness of Design

Explain, with specifics, how the design successfully solved the problem.

Evaluation of Solution Scoring Guide

Nearly Proficient	Proficient	Highly Proficient
The student needs to explain	The student has clearly	The student has clearly
and deal with any errors and	identified errors and	identified errors and
limitations of the solution in	limitations in the design's	limitations and has discussed
a serious and logical manner.	ability to solve the problem.	trade-offs in the design's
-		ability to solve the problem.

Evaluation of Solution

Identify any trade-offs that you had to make in the process of designing a solution.

		U
Nearly Proficient	Proficient	Highly Proficient
The student needs to add	The student has based ideas	The student has based ideas
ideas for making	for improvements on the	for improvements on the
improvements.	information gathered	information gathered
	through the creation and	through the creation and
	testing of a prototype.	testing of a prototype as
		well as the identified
		weaknesses and limitations.

Improving the Design Process Scoring Guide

Improving the Design Process

Describe specific changes that you could make in the future to improve the approach you've taken to solving the problem.

References (Use APA format):