Brain Research May Point to Changes in Literacy Development

New scientific findings spell difference, not disability, for struggling readers.

New scientific findings spell difference, not disability, for struggling readers.

Here's the latest from the research desk: Despite its dominance in the No Child Left Behind era, an across-the-board focus on reading skills may be somewhat misguided.

"The past decade has seen a tremendous push for earlier and earlier emphasis on reading skills," says Martha Bridge Denckla, director of developmental cognitive neurology at the Kennedy Krieger Institute and neurology professor at Johns Hopkins University, who has studied reading acquisition for forty years. "It's well meaning, but possibly not good for a significant subset of children."

New brain-imaging technologies and a spate of recent studies suggest that reading aptitude is better understood as a spectrum of abilities related to biological architecture than as a universally acquirable skill. Misconstruing the neurological underpinnings of reading risks alienating and discouraging students for whom this particular task will never come easily.

"Since the techniques have improved over the last decade, we can see things we couldn't see before," explains Brian Wandell, chair of the psychology department at Stanford University and lead researcher for a study funded by the National Institutes of Health correlating reading skills with brain structure and brain activities. Preliminary results of the study, which followed forty-nine children ages 7-12 over a three-year period, indicate that white matter (the connections between neurons) may be a big factor in reading ability.

Specifically, Wandell's team found that in poor readers, water tends to flow more easily across the axonal membranes in the back portion of the corpus callosum -- the thick band of neurons that connects the brain's hemispheres. "The piece of the brain that's important for detecting moving objects and patterns wasn't functioning as well in the kids who were poor readers," Wandell says.

Although these and similar findings are clearly still "too premature to turn into education policy," says Wandell, "it's not premature to see whether there are some possibilities here for improving reading instruction in the future." To that end, Wandell's team is exploring the ways computer displays and text imaging can help compensate for neurological differences.

Teachers should know about brain development, too, says Denckla, who is also a lead participant in the Neuro-Education Initiative, a collaboration launched last year between Johns Hopkins University's School of Education and its Brain Science Institute. She and other faculty are designing curricula for a master's certification in neuro-education, with the goal of supporting collaboration between the two fields and developing effective applications of brain research to classroom learning.

Some students are ready to read at age three, while others might need to wait until nine, says Denckla, who adamantly opposes the view that earlier is always better in reading instruction. The hope is that a fuller understanding of brain structure can help neuroscientists and educators better determine how -- and when -- each student will best learn to read.

Sara Bernard is a former staff writer and multimedia producer for Edutopia.

This article originally published on 12/3/2008

see more see less

Comments (32)

Comment RSS
Merrill Gay (not verified)

What's the roll of vocabulary aquisition in learning to read?

Was this helpful?
0

It's interesting that the researchers have been able to identify physical differences in the brains of strong and weak readers, but are they looking at what might have contributed to the child being a weak reader. According to the National Center for Family Literacy, poor 4 year olds have heard an average of 32 million fewer words than 4 year olds in a professional family. Could that be related to the the physical differences in the brain?

Stephen Krashen (not verified)

cause and effect

Was this helpful?
0

" ... Wandell's team is exploring the ways computer displays and text imaging can help compensate for neurological differences."

The neurological differences may be the RESULT of environmental factors, such as exposure to comprehensible and interesting text. Use of artificial means to change the brain might be dealing with the effects, not the cause. The answer might be more stories, more exposure to interesting books. Why is this always the last resort?

Stephen Krashen
Professor Emeritus
University of Southern California

see more see less